EN-ES-CS: An English-Spanish Code-Switching Twitter Corpus for Multilingual Sentiment Analysis
نویسندگان
چکیده
Code-switching texts are those that contain terms in two or more different languages, and they appear increasingly often in social media. The aim of this paper is to provide a resource to the research community to evaluate the performance of sentiment classification techniques on this complex multilingual environment, proposing an English-Spanish corpus of tweets with code-switching (EN-ES-CS CORPUS). The tweets are labeled according to two well-known criteria used for this purpose: SentiStrength and a trinary scale (positive, neutral and negative categories). Preliminary work on the resource is already done, providing a set of baselines for the research community.
منابع مشابه
Sentiment Analysis on Monolingual, Multilingual and Code-Switching Twitter Corpora
We address the problem of performing polarity classification on Twitter over different languages, focusing on English and Spanish, comparing three techniques: (1) a monolingual model which knows the language in which the opinion is written, (2) a monolingual model that acts based on the decision provided by a language identification tool and (3) a multilingual model trained on a multilingual da...
متن کاملSupervised sentiment analysis in multilingual environments
This article tackles the problem of performing multilingual polarity classification on Twitter, comparing three techniques: (1) a multilingual model trained on a multilingual dataset, obtained by fusing existing monolingual resources, that does not need any language recognition step, (2) a dual monolingual model with perfect language detection on monolingual texts and (3) a monolingual model th...
متن کاملTwitter as a Comparable Corpus to build Multilingual Affective Lexicons
Résumé The main issue of any lexicon-based sentiment analysis system is the lack of affective lexicons. Such lexicons contain lists of words annotated with their affective classes. There exist some number of such resources but only for few languages and often for a small number of affective classes, generally restricted to two classes (positive and negative). In this paper we propose to use Twi...
متن کاملExploring Sentiment in Social Media: Bootstrapping Subjectivity Clues from Multilingual Twitter Streams
We study subjective language in social media and create Twitter-specific lexicons via bootstrapping sentiment-bearing terms from multilingual Twitter streams. Starting with a domain-independent, highprecision sentiment lexicon and a large pool of unlabeled data, we bootstrap Twitter-specific sentiment lexicons, using a small amount of labeled data to guide the process. Our experiments on Englis...
متن کاملSentiment in Social Media: Bootstrapping Subjectivity Clues from Multilingual Twitter Streams and Exploiting Gender Language Differences on Twitter
We study subjective language in social media and create Twitter-specific lexicons via bootstrapping sentiment-bearing terms from multilingual Twitter streams. Starting with a domain-independent, highprecision sentiment lexicon and a large pool of unlabeled data, we bootstrap Twitter-specific sentiment lexicons, using a small amount of labeled data to guide the process. Our experiments on Englis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016